
Week 6 - Friday



 What did we talk about last time?
 Some binary tree facts
 Java implementation of binary search trees





Recursion



Infix to Postfix Converter





public class Tree {
private static class Node {
public int key;
public Object value;
public Node left;
public Node right;

}

private Node root = null;

…
}

The book uses a generic approach, with keys of type Key and values of type Value.  
The algorithms we'll use are the same, but I use int keys to simplify comparison.



 Visiting every node in a tree is called a traversal
 There are three traversals that we are interested in today:
 Preorder
 Postorder
 Inorder

 We'll get to level order traversal in the future



 Preorder:
 Process the node, then recursively process its left subtree, finally recursively 

process its right subtree
 NLR

 Postorder:
 Recursively process the left subtree, recursively process the right subtree, and 

finally process the node
 LRN

 Inorder:
 Recursively process the left subtree, process the node, and finally recursively 

process the right subtree
 LNR



4

2 5

1 3 6

4 2 1 . . 3 . . 5 . 6 . .



. . 1 . . 3 2 . . . 6 5 4

4

2 5

1 3 6



. 1 . 2 . 3 . 4 . 5 . 6 .

4

2 5

1 3 6



private static void preorder( Node node )

Proxy:

public void preorder() {
preorder( root );

}

Just print out each node (or a dot).   Real traversals will actually do 
something at each node.



private static void inorder( Node node )

Proxy:

public void inorder() {
inorder( root );

}

Just print out each node (or a dot).   Real traversals will actually do 
something at each node.



private static void postorder( Node node )

Proxy:

public void postorder() {
postorder( root );

}

Just print out each node (or a dot).   Real traversals will actually do 
something at each node.



 We can take the idea of an inorder traversal and use it to store a range of values 
into a queue

 We want to store all values greater than or equal to the min and less than the 
max

private static void getRange( Node node,
Queue<Object> queue, int min, int max )

Proxy:
public Queue<Object> getRange(int min, int max){
Queue<Object> queue = new 

ArrayDeque<Object>();
getRange( root, queue, min, max );
return queue;

}





private static Node delete(Node node, int key)

Proxy:

public void delete(int key) {
root = delete( root, key );

}

1. Find the node
2. Find its replacement (smallest right child)
3. Swap out the replacement

It's probably wise to find the replacement with iteration, though we could do it with recursion.

Note: This delete can cause an unbalanced tree.





 Breadth-first traversal
 2-3 trees
 Red-black trees
 Balancing trees by construction



 Keep working on Project 2
 Finish Assignment 3
 Due tonight by midnight!

 Read Section 3.3


	COMP 2100
	Last time
	Questions?
	Assignment 3
	Project 2
	Traversals
	Basic BST class
	Traversals
	Traversals
	Preorder
	Postorder
	Inorder
	Implement preorder
	Implement inorder
	Implement postorder
	Get range
	Delete
	Delete
	Upcoming
	Next time…
	Reminders

